Capturing and Storing Energy: From Fossil Fuels to Renewable Resources
One of the most interesting challenges in energy production is not how to find energy sources, which are abundant, but how to capture and store the energy that is available. For years, energy capture and storage has focused on the availability of fossil fuels and how those resources could be translated into usable energy sources. However, the demand for energy is so incredible and the known fossil fuel energy reserves sufficiently limited that the United States must explore alternative energy sources. Moreover, the United States is not the only country that is hampered, politically, economically, and socially by its energy dependence; instead many countries, especially those that lack relative wealth or access to their own fossil fuel deposits are in even more vulnerable positions. Fortunately, there are viable alternatives to fossil fuels that countries can explore. Hydropower, wind power, solar power, geothermal power, and biomass power all offer potential solutions or partial solutions to the world's energy problems.
Historical Use of Fossil Fuels
In order to understand where energy is transitioning, it is important to understand the history of fossil fuels used for energy. The use of fossil fuels, particularly coal, for energy has an extremely long history. Coal has been used since at least 1100 BC for energy. In the Middle Ages, coal, which could be transformed into energy through fire, was used in forges, smithies, lime-burners, and breweries (IER, 2014). By the 1400s, people could build coal-safe chimneys in their homes and use coal for heat. By the late 1500s, coal was the major heating source for buildings, particularly in cities (IER, 2014). When used for heating, coal replaced firewood, which was a renewable resource. This use of coal is linked to the industrialization that occurred throughout much of the western world, particularly the United States, in the late 1800s.
Like coal, oil has a long history of usage, though many of its uses were not linked to energy. For example, as early as 3000 BC, oil was used in medicines, adhesives, caulks, and roads (IER, 2014). By 1000 BC, the Chinese had figured out how to refine crude oil and use it for lamps and home heating. However, the widespread use of petroleum for energy did not occur until the late 1800s, when petroleum became the widespread replacement for whale oil in lighting. The internal combustion engine for automobiles in the early 1900s represented the first real use of a petroleum product for energy.
Natural gas also has a long history of historic usage. The Chinese used natural gas to fire evaporators to make salt from brine. However, natural gas was considered a nuisance by early oil-well drillers because of transportation difficulties associated with it. Once steel pipelines could be utilized, natural gas could be transported over long distances. The first such long-distance pipeline was built in 1925 (IER, 2014).
While fossil fuels have provided an abundant source of energy, they have also presented challenges in their use. The most obvious challenge is getting the fossil fuels from the ground to storage facilities. Coal could be mined, but coal mining, especially modern practices, can present significant environmental challenges. Oil and natural gas both could naturally escape from the ground, but in order to use them in widespread applications, humans had to devise ways to remove them from the ground. Then, they had to figure out how to convert those three resources from potential energy sources to energy. Initially, this conversion meant burning the fuels for heat; however, the real reliance on fossil fuels began to grow once people realized that fossil fuels could be converted into electrical energy, not just heat.
Capturing and Storing Energy from Oil
Transforming petroleum into energy is a complicated process. Oil is located under ground and must be pumped to the surface for extraction, and then it is transported, generally via pipeline, to petroleum processing facilities. There are three general technologies that can be used to convert oil into electricity. In conventional steam technology, oil can be burned to heat water, which generates steam to turn a turbine and create electricity. In a combustion turbine, oil is burned to create hot exhaust gases, which spin the turbine. In combined-cycle technology oil is burned first to turn a combustion turbine, then the exhaust gases are used to heat
Compare and Contrast ArticlesThe United States has long been a leading nation in energy consumption, with demand only increasing as the years go on. As such, energy policy is a hotly contested topic, with there being a wide range of opinions on the best way to move forward. This paper will be comparing and contrasting two articles that take opposing views on energy policy in the United States. The first
Business Nuclear power, under current conditions, is characterized by much lower regular emissions compared to energy from fossil fuel burning. But, it poses its own unique hazards, of which the most notable is risk of industrial accidents (e.g. Chernobyl) that have acute, long-term repercussions over huge areas. There are also security risks presented by vast inventories of materials that have the potential of being utilized as nuclear weapons; fossil fuels pose
As the term suggest, liquefied natural gas (LNG) is natural gas that has been reduced to a liquid by cooling it to minus 161°C thereby eliminating oxygen, carbon dioxide and other unwanted components to achieve almost pure methane (Liquefied Natural Gas 2012). According to one LNG producer, "In the liquefaction process, impurities are removed from the gas before it is cooled. The cooling of natural gas to -162°C causes it
Physical Science: Energy How Energy Can be Converted from one Form to Another, With Examples "Energy" is defined as the capacity to produce changes within a system. Within a system, energy can be changed to a different state in order to perform work in natural processes or machines (Shipman, Wilson, & Todd, 2009, pp. 88-89). Plants, animals and machines all convert energy to perform work in their processes. Through Photosynthesis, green plants
At the present energy set-up nuclear energy provides around 20% of world's electricity. This energy is produced naturally -- by the sun and other stars making heat and light- and artificially-electricity from nuclear power plants. The nuclear power plants produce more energy using less fuel compared to the fossil fuels and hence it is seen as an environmentally friendly energy source (Ansolabehere, et al., 2003). However, the true scope
Alternative Energy Sources Concerns that have been raised regarding energy security have been occasioned by fears about oil and other fossil fuel depletion; reliance on foreign sources of energy; geopolitics; developing countries' energy needs; environmental concerns; population dynamics; and renewable and other alternative energy sources (Shah, 2011). This essay seeks to establish whether alternative energy sources can help ease human reliance on oil. It is important that governments invest on alternative sources
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now