Biomechanical Priciples
Biomechanical Principles
Biomechanics is the study of mechanical and physics principles in relation to motion in sports. Every sport has its biomechanical theories and each one is specialized to that particular skill with equations derived from Newtonian physics and knowledge of the human body and its capabilities. When combined and properly practiced, biomechanics can improve an athletes overall performance, making the athlete superior to their competitors.
The freestyle arm-pull in swimming is a precise study in the art of biomechanics introduced for an efficient result. It is an established fact that water is 773 times as dense as air and 55 times as viscous (Miller, 1975). What this means is that planning an efficient stroke in water is going to require greater strategy than planning an efficient stroke in air. The primary factors that go into creating the ideal stroke in swimming are vectors, motion, force, work, and power.
Vectors
The primary vectors in swimming are drag and lift. Drag is the slowing effect that water has against the body's speed. Drag slows the body down and increases the amount of force necessary for an athlete to effectively move through the water. In freestyle swimming, drag is also the greatest factor in allowing a swimmer to pull themselves through the water.
The key technique for taking advantage of drag vectors in water is known as scribing the water. This motion in essence pulls the swimmer through the viscous layers of the water and propels the body through (Richardson, 1986).
While this propulsion does move the swimmer quickly, the swimmer also has additional vectors pulling against the force. There are three specific vectors to consider that pull against the swim stroke and the swimmer. The first vector is friction drag. Friction drag is directly related to the viscosity of a liquid. It is the reason why molasses is thicker and more difficult to stir than water. The way this effects a swimmer is simple, the water that is immediately against the swimmer's body gets pushed into the next layer of water and so on. The less viscous a liquid is, the easier these layers move.
The second vector pulling against swimmers is pressure drag. According to Boone, pressure drag is "The orderly flow over the swimmers' body may separate at a certain point, depending on the shape, size and velocity of the swimmer. Behind the separation point, the flow reverses and may roll up into distinct eddies (vortices). As a result, a pressure differential arises between the front and the rear of the swimmer, resulting in 'pressure drag', which is proportional to the pressure differential times the cross sectional area of the swimmer." (Boone 2005). So, along with the force of each layer of water pulling against the swimmer, the water then comes back and pushes against the lower half of the swimmer's body.
The final form of drag vector is wave drag. Wave drag occurs at the surface of the water. As waves form in the pool, the force of the waves against the body slows the body's progress through water. It is this form of drag that causes the best athletes to spend as much time as possible under the water (Boone).
The primary way that athletes overcome these force vectors is through specialized drag suits. The drag suits are designed to streamline the athlete through the water and reduce the total amount of friction and pressure drag experienced during the swim, thus making the athlete swim faster.
Motion
According to Newton's laws, an object will remain in motion once propelled into motion. This principle, also known as inertia, applies to swimming to mean that the more force used to propel the swimmer into the freestyle swim, the less force the swimmer must use to propel themselves once in the water (Burkett 2012). Once the inertia from the dive wears off, the swimmer's...
Biomechanics is the application of mechanics to biological systems. Biomechanics is alternatively known as Kinesiology. Biomechanics finds its origins from the beginning of scientific and social thought. Socrates averred that if we were to understand the world around us, we ought to first understand ourselves. Aristotle (384-322 B.C.) is considered the, "Father of Kinesiolgy." His treatises described the actions of the muscles and subjected them to geometric analysis for the
Biomechanics of the Shoulder Since the time of Leonardo di Vinci's pioneering exploration of the human anatomy, man has recognized the perfect union of form and function found in the shoulder joint. Providing a fortuitous combination of mobility and stability, the shoulder joint complex permits a wide range of motion that differentiates human arm movement from that of lower animals. Examined from the unique perspective offered by modern biomechanical research, the
Short Distance Running Sports biomechanics is one of the most important components in the field of sports since it provides insights regarding human movement using an injury reduction and performance enhancement perspective. Consequently, coaches and physicians utilize information regarding sports biomechanics to understand the athletes’ correct and incorrect technique. Most of the existing research on sports biomechanics generate insights regarding the basic kinetic and kinematic attributes of specific athletic movement. Short
Biomechanical Description of Technique: The experimental technique consisted of precise measurements of several knee angles known to be relevant to PFPS symptoms and to acute ACL injuries. Those measurements were ascertained through the use of skin markers distributed on the lower extremities on subjects with no known histories of knee pathology or symptomatic complaints. After measuring VV and IRER angles in the neutral barefoot position, the researchers made similar measurements of
Jete' Analysis of the Muscles Involved The Center of Gravity Analysis of the Injuries Prone to the Movement It is not known when leaping first appeared in dance. Many ancient forms of dance involve leaping. The most common connotation of leaping is found in ballet. Ballet reached the height of its popularity during the reign of Louis XIV at the end of the late 17th and early 18th centuries. It was because of
Rehabilitative Biomechanics There are various exercise science and wellness promotion sub-disciplines, such as exercise physiology, biomechanics, sport nutrition, rehabilitative biomechanics, and sport psychology. Each relates to my career options as offering a significant approach to the workplace environment via a strong degree in kinesiology. The career path of my choice is to enter into rehabilitative biomechanics and therefore to pursue a degree in kinesiology, so as to become familiar with using
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now