U.S. statistics indicate that 80% of aviation accidents are due to human errors with 50% due to maintenance human factor problems. Current human factor management programs have not succeeded to the degree desired. Many industries today use performance excellence frameworks such as the Baldrige National Quality Award framework to improve over-all organizational effectiveness, organizational culture and personal learning and growth. A survey administered to a sample population of senior aviation maintainers in 18 countries revealed a consistent problem with aviation human factors and the need for a more integrated framework to manage human factor problems in aviation maintenance.
Human Factors History
Current Human Factor programs in Aircraft Maintenance
Performance Excellence Framework
Researcher's Work Setting and Role
Statement of the Problem
REVIEW OF RELEVANT LITERATURE AND RESEARCH
Human Factor Errors in Aircraft Maintenance Statistics
Current Human Factor Programs in Aircraft Maintenance 13
Aviation Performance Excellence Framework 12
Statement of Research Question 18
III. RESEARCH METHODOLOGY 19
Research Design 19
Research Model 19
Survey Population 19
Source of Data 20
Pilot Study 20
The Data Gathering Device 21
Distribution Method 22
Instrument Reliability 22
Instrument Validity 22
Treatment of Data and Procedures 23
IV. RESULTS 24
Human Factor Programs and Management 24
Most Common Outcomes of Safety Occurrences 25
Survey Feedback 28
V. DISCUSSION 30
VI CONCLUSION 37
VII RECOMMENDATION 38
REFERENCES 42
CHAPTER I
INTRODUCTION
Background of the Problem
Imagine you are a member of an aviation organization, such as the military, and you have just been told that you will need to work over the weekend because there has been a fleet grounding issue on your F-16 aircraft. You will need to work to get all the aircraft inspected by Monday morning. You have just put in close to 60 hours of work that week and you are really tired. Your organization has sent you for Human Factors (HF) training and workshops and your management has told you to call for time-out when you feel tired yet they say there is an urgent need to get the aircraft inspected over the weekend.
Although your body tells you that you can no longer take it, your mind tells you that you must keep going and be a team player or else the whole team will fail in this important mission. As you console yourself on your way home, you are reminded of how many times this year you have been doing this and the close encounters you have had with making an error of judgment. You are immediately reminded of that famous lecture you heard during HF training that "the chain is only as strong as its weakest link." The next morning, before you go to work, you hear that one of your friends the night before had hit and damaged the aircraft nose landing gear with a Harlan tractor and now management has called for an urgent safety briefing to remind everyone of the need to be vigilant and aware of such lapses in judgment. You immediately recall how one of your colleagues had been screaming to remove the Harlan tractor or Toyota tractor because they both had exactly the opposite reverse gears, in one you push the lever forward and the other backward. Does this sound far too familiar?
Today, more than ever, the aviation world is faced with the constant challenge of addressing human factors in maintenance. While there have been several advances to the study and implementation of human factors programs, there are still several inconsistencies to the way these programs are implemented and hence the varied results.
Aircraft maintenance work encompasses fast turnaround, high pressure with possibly hundreds of tasks being performed by large numbers of personnel on highly complex and technologically advanced systems in a confined area. It is very easy for information and tasks to fall through the safety net. Events around the world in the late
1970s, 1980s and early 1990s, involving crashes or serious accidents with aircraft, alerted the aviation world to the fact that although the aircraft were becoming much more reliable, the human being in the process had the potential to obliterate any of these technological advances. The role played by human performance can be found below.
In this research project we will analyze the top human factor problems in aviation maintenance and evaluate a holistic solution to addressing these problems through a performance excellence framework. We will start with a brief look at the history of HF
programs and the changes that have taken place over the years. We will also explore the current HF programs adopted by several organizations and try to understand why HF
error occur, and how comprehensive, the solutions...
(2) Analyzing all accident data without regard to the type of airframe provides for an easy sampling and less potential bias toward fixed wing vs. rotary wing aircraft. (3) Not including ground accidents into the research will allow the research to focus only on aviation accidents. (4) Limiting the research to a four-year period; 2003 to 2006 will provide an adequate sampling of the data and not constrain the research results. Assumptions First Assumption The
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now