But a fully automated system could, at least in theory, move bags quickly and efficiently enough to make the entire enterprise work. Indeed, United Airlines would not sign a lease to be the principal tenant at Denver until it was assured that the airport would have an effective automated baggage handling system. (de Neufville, pp. 2-4).
The designers of the system focused on speed as its signal characteristic. They promised to deliver a system at which the bags would be moved at speeds up to 24 miles per hour so that the bags from a narrowbody jet could be unloaded and sent to their destinations within twenty minutes. For larger, widebody jets, the delivery time was promised to be thirty minutes. The designers boasted that the system could move a bag from one part of the airport to any other part within ten minutes. (deNeufville, p. 4).
Boeing Airport Equipment, which later changed its name to BAE Automatic Systems, was initially responsible for the design of the automated baggage handling system. BAE's proposed design was the most complex automated system ever designed. BAE systems convinced, Walter Slinger, Denver's Chief Airport Engineer that such an ambitious automated system would work by building a prototype automated baggage-handling system. BAE built this prototype in a 50,000 sq. ft. warehouse near its manufacturing plant in Texas. (Donaldson, 1998).
Denver's system included an impressive collection of technology. It used over 300 desktop computers, a large server that hosted a database essential to running the system, a high-speed fiber-optic network, 14 million feet of wiring, 56 laser arrays, 400 frequency readers, 22 miles of track, 6 miles of conveyor belts, 3,100 standard telecars, 450 oversized telecars, 10,000 motors, among other things. (Schloh, 1996). Each track could, in theory, carry 60 DCVs per minute. The DCVs were controlled by "radio frequency identification" or "RFID." (deNeufville, 1994, p. 3).
The design and installation of the automated baggage handling system did not go smoothly. Problems with the system caused substantial -- and expensive -- delays in the airport's opening. It was originally scheduled to open in October 1993, and delays initially pushed that date back to March or April of 1994. But continuing problems with the baggage handling system prevented the airport from opening even at that later date. The system was not ready and the airport did not open until March 1995. These delays added $500 million in construction and interest costs to the total cost of the project. (de Neufville, 1994, p. 2).
The problems began at the very outset the guiding hand behind the automated system at the outset of the project was Chief Airport Engineer, Walter Slinger. Unfortunately, Slinger died six months into the project. His replacement had a different management style and little knowledge of construction. Moreover, he lacked Slinger's keen commitment to making the system work effectively. This change at the top was indicative of how the rest of the project was going to go.
The problems continued through the construction of the principal facilities for the airport -- its terminals, concourses, runways, and the internal infrastructure that served all of those facilties. In the course of the design, construction and testing of the physical facilities, individual airlines made numerous changes to the facilities that would affect the operation of the baggage handling system, such as adding ski-claiming devices and odd-size baggage elevators.
In addition, the design of the automated baggage handling system at Denver was undertaken after the terminals and runways had already been planned and after their construction was underway. Consequently, the physical specifications of the baggage handling system had to be shoehorned into existing spaces. In many circumstances, the area provided for the baggage handling system was simply not adequate for the system's own requirements. In addition, the contract for the system's design and construction was awarded only twenty-one months before the original opening date. The short timeframe precluded the designers from undertaking any simulation or physical testing of the full-scale design. (deNeufville, p. 4).
Communication problems made things worse. No-one effectively managed the lines of communication connecting city government, the managers of the airport project itself, the designer of the automated baggage handling system, and the airlines themselves. Consequently, coordination among these constituent groups was lacking. This multiplied the problems associated with managing information. And these information management problems were particularly vexing, given the fact that an automated baggage handling system is largely an enterprise in managing information.
There were problems...
Project Management The baggage handling system (BHS) project is in motion. Initially, our company Boeing Airport Equipment Automated Systems, Inc. (BAE) stipulated that no change requests should be accepted. However, it is proving impossible to ignore the influx of change requests from major stakeholders, namely the airlines. As project manager, I have determined that our policy regarding change requests should itself be changed, from a public relations standpoint. We cannot risk further
And many have got successful too in earning the market share. The emerging competition by new companies is a growing threat for the company and it should be tackled properly to avoid any future disturbances. In order to further describe the competition Southwest Airlines is facing a Competitive Profile Matrix is designed. The following Competitive Profile Matrix tells about the tough competitors which are in a good position to have
While this paper focuses on process-centric improvements to McCarran, the research completed for this paper highlights the critical need for an all-encompassing IT architecture that allows for data to support both processes as thoroughly as possible. Figure 3: Combining the Check-in and retailing processes for greater efficiency Luggage and Baggage Process Improvements Another major area of process improvement McCarran needed to focus on was luggage and baggage handling. The airport had been
Cognitive laziness, according to the experts, is a condition in which people reveal a tendency to take short cuts for a number of things, including a short cut to flying on automation, as in this case. Social loafing refers to the tendency displayed by people, in which people tend to expend lesser effort in any given situation, when there is a group of individuals involved. ("Cockpit automation may bias
43 in 2009. Yet current airframe and power plant mechanics are inclined to move to the computer and automotive sector for better work environment. Analysts advised the creation and use of informational recruiting tools to attract these potential workers. in-house training programs on long-term career growth and a sense of commitment to the company would be one form. Another could be employee-retention programs on leadership, technical, and management training courses.
MIA Terminal Systems Miami International Airport (MIA) has three terminal buildings -- north, central, and south. The North terminal was completed in 2014, to help American Airlines expand its Miami hub operations connecting the U.S. with the Caribbean and Latin America (MIA, 2015). As one of the largest airports in the United States, MIA is well-equipped with modern facilities. General Terminal Layout The terminal layout at MIA consists of a central parking garage.
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now