Animal Production: Biotechnology
Biotechnology has achieved some dramatic advances in recent years in both crop and livestock production. Food production results from the interaction of humans, animals, land and water; to help speed up this process, make it safer and more efficient, biotechnology has been involved. These include transferring a specific gene from one species to another to create a transgenic organism; the production of genetically uniform plants and animals (clones); and the fusing of different types of cells to produce beneficial medical products such as monoclonal antibodies. Today, biotechnology has a number of applications in livestock production. It is being used to hasten animal growth, enhance reproductive capacity, improve animal health and develop new animal products. In 1999, FFTC carried out a regional survey to draw up an inventory of technologies and products which have been developed using biotechnology for livestock production. Some of these are now being applied on farms, others are still being developed in research stations. Animal production is important to agriculture, and biotechnology has improved range management, food safety and animal health as well as reproduction.
Biotechnology can increase the digestibility of low-quality roughage, and genetically modify plants to improve their feed value, such as the amino acid balance. It can also provide hormones and other substances that enhance animal size, productivity and growth rates. Synthetic hormone bST (bovine somatotropin) was among the first innovations available commercially. It can increase milk yield by as much as 10 to 15 per cent in lactating cows. Livestock is a very important industry in the global economy. Current development efforts are looking at a whole spectrum of genes that affect growth and production within the animal. Ways to genetically engineer cattle to increase their own natural hormone production are being considered, thus eliminating the need for synthetic bST. Locally produced recombinant bovine somatotropin (BST) is being used in Korea as a growth stimulant and for increased milk production in cattle.
High-protein yeast cell products are being used as a feed additive for cattle, pigs and poultry. Highly palatable and nutritious, these products also help create a healthy balance of bacteria in the digestive tract, and prevent bacterial diarrhea. A bacterial phytase formula, TRANSPHOS, is being used to replace the costly mineral phosphate used as an additive in the feed of monogastric animals in Korea. In the Philippines, a bacteriocin is being produced which has antibacterial properties against Listeria monocytogenes, Staphylococcus aureus, and other pathogens found in livestock feed and human food. L-lysine monohydrochloride, a safe and stable form of lysine, is being produced in Korea by the fermentation of a special strain of bacteria in raw molasses. Lysine is one of the most essential amino acids. Livestock requirements for it are hardly met by the amount present in natural feeds. Lysine supplementation improves the nutrient balance of feed, and feed conversion rates by livestock. In the improvement of silage, strains of the bacteria Lactobillus planetarium are being selected which increase the lactate content and reduce the pH and ammonia-N content.
Copra meal (made from dried coconut after extraction of the oil) is being inoculated with a bacterial soil isolate in the Philippines. The treated meal is a more nutritious and digestible livestock feed, with a lower fiber content, than untreated meal. A bacterium, Rhodopseudomonas capsulata, has the ability to grow rapidly in simple synthetic media. It is being used in advanced swine waste treatment plants in both Japan and Korea. Short chain fatty acids, one of the main sources of the bad odor of swine wastes, decreased dramatically after treatment. The residues after treatment can be used as a safe organic fertilizer.
Biotechnology can greatly accelerate the speed at which desirable characteristics (e.g. better growth rates, or increased milk production) can be introduced into animals. While classical breeding to enhance animal traits works well, it takes decades to produce major changes. Through biotechnology, an organism can be modified directly in a very short time if the appropriate gene has been identified. A recent breakthrough in animal reproduction is the combined application of the existing in vitro fertilization, and the state-of-the-art ultrasound-guided transvaginal oocyte pick-up (OPU) technique in cattle. When heifers reach puberty at 11-12 months of age, their oocytes may be retrieved weekly or even twice a week for embryo production and embryo transfer. There is even the possibility of applying this technology to juveniles. In this way, high-value female calves can be used for breeding long before they reach their normal breeding age.
In Korea, Japan and Taiwan, a range of hormone implants and treatments are being used to increase the production of mammalian...
This is what makes drug testing on animals so very important in the pharmaceutical industry. References Cami, Jordi. (1991). Perspectives and future on testing for abuse liability in humans. British Journal of Addiction. 86(12), p1529-1531. De Boer, Bonita. (2009). HIV Drugs, Vaccines and Animal Testing. Retrieved March 19, 2010, from Avert Web site: http://www.avert.org/hiv-animal-testing.htm Greaves, Peter, Williams, Andrew and Eve, Malcolm. (2004). First dose of potential new medicines to humans: how animals help. Nature
production of food products has changed dramatically over the past several years. Technological changes in machinery, increased use of better and more expedient forms of transportation, and improved fertilizers have all contributed to a more efficient food production process. This more efficient process, however, has not come with some requisite problems. The existing system of delivering food products in the United States is a major contributor to the world's global
Two main aims of the zoos are highlighted by the author in the article. Firstly, zoos provide the environments that are suitable and represent some level of wilderness. Secondly, the zoos must provide entertainment to the visitors. But the zoos have been criticized by the author. One of the most important facts in these cases is the relationship between pornography and zoos as given by the authors. The way
Animal testing is not only for the benefit of the humans but is also beneficial to the animals themselves. "The research of the National Institute of Environmental Health Sciences benefits animals because NIEHS research contributes to protecting the environment for all the life that shares the earth - companion animals, farm animals, wildlife, marine life - and plant life as well" (Anonymous). Much more animals are consumed as a
.. it's healthy, it's somebody's way of life, it's somebody's livelihood, it's somebody's business.(ibid) This is a strongly worded statement and indictment of an uncaring humanity. However, bearing in mind the daily evidence of cruelty to animals one cannot but feel that there is an element of truth to this argument. Commercial reasons for abuse One of the central reasons or "justifications" for animal abuse and possibly why so many turn a blind
The main side effect of colchicines on animals is nausea. The use of colchicines on animals has also generated numerous concerns regarding the toxicity of bone marrow because of the ability of these substances to interfere with cell division. Furthermore, these substances are also likely to cause urine dip stick to wrongly read positive for blood. Colchicines can not only enhance the level of alkaline phosphatase as recorded on
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now